Two identical discs of same radius R are rotating about their axes in opposite directions with the same constant angular speed ω . The discs are in the same horizontal plane. At time t=0, the points P and Q are facing each other as shown in the figure. The relative speed between the two points P and Q is v_r . In one time period (T) of rotation of the discs, v_r as a function of time is best represented by

(a) v_r (b) v_r (c) v_r (d) v_r

(a) At t = 0, $t = \frac{T}{2}$ and t = T the relative velocity will be zero.

At $t = \frac{T}{4}$ and $t = \frac{3T}{4}$, the relative velocity will be maximum in magnitude